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In Silico Prediction of Cytochrome P450 2D6 and 3A4 Inhibition Using Gaussian Kernel
Weighted k-Nearest Neighbor and Extended Connectivity Fingerprints, Including Structural
Fragment Analysis of Inhibitors versus Noninhibitors
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Inhibition of cytochrome P450 (CYP) enzymes is unwanted because of the risk of severe side effects due
to drug—drug interactions. We present two in silico Gaussian kernel weigkteshrest neighbor models
based on extended connectivity fingerprints that classify CYP2D6 and CYP3A4 inhibition. Data used for
modeling consisted of diverse sets of 1153 and 1382 drug candidates tested for CYP2D6 and CYP3A4
inhibition in human liver microsomes. For CYP2D6, 82% of the classified test set compounds were predicted
to the correct class. For CYP3A4, 88% of the classified compounds were correctly classified. CYP2D6 and
CYP3A4 inhibition were additionally classified for an external test set on 14 drugs, and multidimensional
scaling plots showed that the drugs in the external test set were in the periphery of the training sets.
Furthermore, fragment analyses were performed and structural fragments frequent in CYP2D6 and CYP3A4
inhibitors and noninhibitors are presented.

Introduction In silico approaches for predicting the CYP inhibition
potential of drugs are attractive as they may be applied to entire

body, ultimately controlling whether or not the compound exerts chemical libraries at the outset of the drug d|_scoy_ery process,
a toxic effect. Ideally, drugs and other xenobiotics are broken USually at very small cost. In that way, the in silico models
down to harmless soluble metabolites that are easily excreted®Ter considerable potential for reducing the number of experi-
through the urine or bilé Cytochromes P450 (CYPsare the mental studies required for compound se]egtlon and for improv-
primary enzymes responsible for human drug metabolism. The IN9 the success rate. Furthermore, predictions can be made on
isoenzyme CYP3A4 is the most abundant hepatic cytochrome Virtual compounds.
P450 and is estimated to be involved in the metabolism of more  Different in silico models for the classification of CYP2E568
than 50% of all marketed dru§<CYP3A4 can also be inhibited ~and CYP3A4 7913 inhibition have been published. The
by other xenobiotics, such as flavonoids, which are consumed CYP2D6 models are based on 100 to 1810 diverse compounds,
in large quantities in the human dfe€YP2D6 is a polymorphic ~ with the most predictive model being the one published by
member of the P450 super-family, which has been studied O’Brien and de Groot.This model, built on 1810 compounds
extensively, partially because-10% of the Caucasians and and validated with a test set consisting of 600 molecules, has
1% of the Asians lack CYP2D6 activity and partially because an accuracy as high as 99% when 23% of the compounds are
it catalyzes the oxidation of many broadly prescribed pharma- not classified. The published CYP3A4 models are based on 218
ceuticals, including antiarrhythmics, antidepressants, antipsy-to 4000 diverse compounds, and the accuracies cover a field
chotics, beta-blockers, and analgesits. from 66—94%. In both CYP3A4 and CYP2D6 models there is
Because a huge variety of drugs are metabolized by CYP3A4 generally a marked difference in the descriptors chosen and the
and CYP2D6, inhibition of these enzymes by one drug might applied statistical methods.
lead to a decreased clearance of another drug when two or more |, this work, we report in silico models that classify CYP2D6
drugs are administrated simultaneously. Such unexpected-drug 5nq4 CYP3A4 inhibition based on two diverse data sets of
drug interactions can potentially have fatal consequences forNcEs tested in 2aM concentrations for inhibition in human
the patient, and new chemical entities (NCEs) should be jjer microsomes with dextromethorphan and erythromycin as
investigated for CYP inhibition as early as possible in drug g pstrate probes. The models are built using a novel Gaussian
research. kernel weighted-nearest neighbok¢NN) algorithm based on
Tanimoto similarity* searches on extended connectivity fin-
gerprints (ECFP) and functional class fingerprints (FGEP)

Metabolism determines the fate of a compound entering the
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Table 1. Training and Test Set Divided into Two Classes with Respect Table 3. Occurrence and Frequency of Ring Fragments and Functional

to CYP2D6 Inhibition in Human Liver Microsomes Groups in the CYP2D6 Training Set; 571 of the 865 Compounds Were
— Also Represented in the CYP3A4 Training Set
training set test set
— Structure group  AutoNom Name Non-inhibitors  Inhibitors F(1) F(2)
inhibition < 50% 552 183
inhibition > 50% 313 105 © Benzene 505 215 110 0839
sum 865 288 N0
\f Acetamide 260 117 1.08 0.860
Table 2. Training and Test Set Divided into Two Classes with Respect 0 b
to CYP3A4 Inhibition in Human Liver Microsomes \f Propan-2-ons 102 % 116 077
training set test set .ﬂ/ﬂ Pyridine 64 20 119 066b
inhibition < 50% 766 255 o o
inhibition = 50% 271 90 Y Acetic acid 55 10 133 0434
sum 1037 345 N
\T Propen-2-ol 43 5 140 0.29¢
Resu |ts 0>/S\<o Methanesulfonylmethane 37 2 1.49 0.144
Training Sets. The training sets consisted of a total of 865 Carbanic aidisopropy! 2 1 124 057b
compounds, which were tested for inhibition of CYP2D6 in !
. . . Os N -~
human liver microsomes with dextromethorphan as substrate, 7~ N-Ethyl-acetamide 25 3 140 0304
and a total of 1037 compounds tested for inhibition of CYP3A4
in human liver microsomes with erythromycin as substrate; 571 __ /
of the compounds were tested for both CYP2D6 and CYP3A4 D Diethyl-isopropyl-amine >4 s 066 1614
inhibition. The distribution of compounds in the two classes is e 3.5-Dimethyl- ) ” x5 aisa
shown in Tables 1 and 2. i [1.2.4]oxadiazole R

The compounds were from 20 Novo NordiSk. discovery a Significant difference on a 0.001 test level from the frequency of the
projects and had been tested over -a54year period. The noninhibitors.? Significant difference on a 0.005 test level from the
complete structures of the compounds cannot be disclosed afrequency of the noninhibitors.

:\Il’llsdt_lnlle_rbecggse thtﬁy atl'e Itn thled_dlscgiver}/tstage at NO(;IO Table 4. Occurrence and Frequency of Ring Fragments and Functional
. or ',S, - 10 address the struc u,ra _|ver3| y or the compounds Groups in the CYP3A4 Training Set; 571 of the 1037 Compounds Were
in training sets, a cluster analysis using 166 MACCS structural also Represented in the CYP2D6 Training Set

keys and a threSh0|d deflned by a TanImOtO Coeffléfbnf Structure group AutoNom Name Non-inhibitors  Inhibitors F(1) F(2)

0.85 was performed. The 865 compounds tested for CYP2D6 —

inhibition were split into 589 clusters, the five highest populated " ¢ Diethyl-isopropyl-amine 103 10 124 03¢

clusters contained 31, 15, 14, 11, and 11 members, respectively, Trichyl-amine 06 s o

the next 117 clusters containeet 20 members, and 467 clusters -

were singletons. The 1037 compounds tested for CYP3A4 D Pyrrolidine 87 5 128 0214

inhibition were split into 741 clusters, and the five highest

populated clusters contained 26, 23, 12, 11, and 10 members, ( Acetic acid 79 2 132 0.09¢

respectively. The next 141 clusters contained72members, N0

and 595 clusters were singletons. The results suggest that the » | Aseiyl-urea M : 128 02

two training sets were diverse within the MACCS chemical (J Benene s s s osrb

space they represent. S } ) ) )
Structural Fragments. All compounds in the two training @ Bensene 25 s a6 026

sets were decomposed into ring fragments and functional groups ~ x3 ' '

as described in the method section. Structural groups for which O { /N 1-Cyclopentyl-piperazine 2 0 135 0008

we found statistical difference in frequency between the two

classes with statistical difference beyond a 0.005 test level, are

shown in Tables 3 and 4. The frequency of a fragment in a ”‘T"" Acetamide 345 150 094 1160
CYP inhibition class was calculated as

YO Propen-2-ol 22 30 057 2214
frequency of a fragment (N Nioa)/
q y g ( fragment_classx tOtal) o>s\<o Methanesulfonylmethane 21 28 0.58 2.194
(NfragmentﬁtotalX Nclasg (1) TR
PN f‘:ﬁ'lff"yl“““e"““yl' 0 17 0.00 3.83¢
whereNfagment_clasdS the number of compounds containing the @ . - . s Lord
fragment in a CYP inhibition clas is the total number of . e ' '

compounds Niagment_total IS the total number of compounds a Significant difference on a 0.001 test level from the frequency of the

containing the fragment, ardyassis the number of compounds  noninhibitors.b Significant difference on a 0.005 test level from the

in the CYP inhibition class. The data sets were unbalanced frequency of the noninhibitors.

between inhibitors and noninhibitors, butMg.sswas included

in eq 1, the effect of the biased data set was eliminated. Theacid esters, were more frequent in noninhibitors than in

frequencies of fragments in a CYP inhibition class were inhibitors, whereas tertiary amines and oxadiazole fragments

statistically compared by standard binomial techniques. were more frequent in inhibitors than in noninhibitors (Table
For CYP2D6 structural groups, including benzene, aceta- 3). For CYP3A4 structural groups, such as tertiary amines,

mides, carboxylic acids, phenol fragments, sulfone, and carboniccarboxylic acids, pyridine fragments, pyrrolidine, cyclopentyl-
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0 Non-Inhibitors m Inhibitors Table 6. Result of Cross Validation of the Traditional CYP2D6 Binary
40 k-NN ModeP
i pred. pred.
30 ) inhibitor ~ noninhibitor  nonclassified sum
§ Predicted as | Predicted as measured CYP2D6 137 (+35) 89 (+52) 87 313
§_ inhibitors I' non-inhibitors inhibitor
20 1 | measured CYP2D6 45 (+32 430 (45 77 552
§ |
o ] noninhibitor
2 1o i sum 182 ¢67) 519 @-97) 164 865
| a2The numbers in brackets illustrate how the nonclassified compounds
0 11 would be classified.
S, g 2 ; g g g § g -D- Table 7. Result of Test Set Validation of the CYP2D6 Gaussian Kernel
SN2 S R ) T R Weightedk-NN ModeP
Probability for Class Membership ~ pred. pred.. B
. o L ) . inhibitor  noninhibitor  nonclassified  sum
Figure 1. Distribution of the predictions with respect to probability
of class membership when cross validating the CYP2D6 inhibition Measured CYP2D6 53 (+10) 37 (+5) 15 105
model based on FCFP and 865 drug candidates. inhibitor
measured CYP2D6 11 (+9) 159 (+4) 13 183
Table 5. Result of Cross Validation of the CYP2D6 Gaussian Kernel noninhibitor
Weightedk-NN ModeP sum 64 ¢-19) 196 (+9) 28 288
~ pred. pred.. - aThe numbers in brackets illustrate how the nonclassified compounds
inhibitor ~ noninhibitor  nonclassified sum would be classified.
measured CYP2D6 180 (+24) 79 +-30) 54 313
inhibitor 164 of the 865 compounds in the training set corresponding to
me:osrt]xirnehcib(i:t\gfme 48 (+38) 438 (+28) 66 552 19% were not classified and 81% of the classified compounds
were predicted to the right class. The results indicated that the
sum 228€62) S17(58) 120 865 new Gaussian kernel weight&NN method applied to the data
@ The numbers in brackets illustrate how the nonclassified compounds reported here was more predictive than the traditional binary
would be classified. k-NN method.

piperazine, and one- or three-benzene groups, were frequent in Validation of CY_P2D6 I\f/l(;(ézl.dThe mogﬁi was \_ll_ahlldated
noninhibitors, whereas the chemical structures, acetamides " & st set consisting o rug candidates. The average

I~ Tanimoto similarity to the training set of all 288 compounds
henol fragments, and sulfone and pyridine fragments, were . ) . .
Found to bg frequent in CYP3A4 inhillgi)t/ors (Tablg 4). and 20 nearest neighbors was 0.53. The result is depicted in

Construction of CYP2D6 Model. The optimal parameters Table 7, which shows that 28 of the 288 compounds, corre-

of the CYP2D6 kernel weightedNN model were chosen using ~ SPonding to 10%, were not classified. Of the classified

leave-one-out cross validation (LOOCYV) on the 865 compounds cqmpounds, 82% were predic‘;ed_to the right class. In accqrdance
in the training set, as described in Materials and Methods. It with the LOOCYV result, the distribution of correctly predicted

was decided to use FCFP_6 as descriptors, 20 neighbors e'inhibitors and noninhibitors was biased; in the validation result,
dynamic smoothing factor Set to 0.5. and an ,uncertainty terr,n 59% of the classified inhibitors and 94% of the classified

0f 0.2. The distribution of predictions with respect to probability "Oninhibitors were correctly classified.
of class membership is depicted in Figure 1, while the Construction of CYP3A4 Model. The Optlmal parameters

classification result is shown in Table 5. Figure 1 shows that Of the CYP3A4 kernel weightektNN model were chosen using
the noninhibitors in general were predicted with higher certainty LOOCV on the 1037 compounds in the training set. Based on
than the inhibitors. A higher percentage of the noninhibitors the cross validation, it was decided to use ECFP_6 as descrip-
was predicted with a probability of class membership of 0.70 tors, 20 neighbors, a dynamic smoothing factor set to 0.4, and
or more, and fewer compounds were falsely predicted asan uncertainty term of 0.2. The distribution of predictions with
inhibitors. Table 5 shows that 120 of the 865 compounds in respect to probability of class membership is depicted in Figure
the training set, corresponding to 14%, were not classified. As 2, While the classification result is shown in Table 8. A high
mentioned above, the prediction results were unbalancedpPercentage of the noninhibitors was predicted with a probability
between inhibitors and noninhibitors; 69% of the classified Of class membership on 0.80 or more, and few compounds were
inhibitors and 90% of the classified noninhibitors were classified falsely predicted as inhibitors. Table 8 shows that 103 of the
correctly. Overall, 83% of the classified compounds were 1037 compounds in the training set, corresponding to 10%, were
predicted to the right class. not classified. Again, the prediction results were unbalanced

A permutation tedf was made to secure that the predictions between inhibitors and noninhibitors; 75% of the classified
were based on the variance described by the fingerprintsl Theinhibitors and 96% of the classified noninhibitors were classified
y-values were randomized four times, the four new models gave correctly, and overall, 87% of the classified compounds were
a mean prediction accuracy on 55% (standard deviatior02), predicted to the right class.
and 23% (standard deviation 0.02) of the compounds were A permutation test was made to make sure that the predictions
not classified due to the 60% threshold. The result shows thatwere based on the variance described by the fingerprints. The
the predictions made by the original model were not based onfour new models gave a mean prediction accuracy on 68%
an accidental correlation. (standard deviatior= 0.01), and 15% (standard deviatien

To investigate the power of the new Gaussian weighktisidN 0.02) of the compounds were not classified due to the 60%
method, traditionally binari-NN was applied to the same data threshold. The result shows that the predictions made by the
set. Table 6 shows that, when using traditionally binafyN, original model were not based on an accidental correlation.
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0O Non-inhibitors ® Inhibitors Table 10. Result of Test Set Validation of the CYP3A4 Gaussian
60 Kernel Weighteck-NN ModeP
pred. pred.
inhibitor  noninhibitor  nonclassified  sum
8 40 = measured CYP2D6 44 (+11) 24 (+11) 22 90
2 Predicted as | Predicted as inhibitor
g L iy S measured CYP2D6 13 (+13) 217 (+12) 25 255
[ | noninhibitor
o
= 20 : sum 57 (-24) 241 (¢-23) 47 345
| a2The numbers in brackets illustrate how the nonclassified compounds
| would be classified.
I | 1 . - .
' Table 11. Prediction of Percent Inhibition of Compounds in an External
2 R e e e Bl RS Test Set Consisting of Known Inhibitors of Either CYP2D6 or
L] [l i ] [ [ ] [l 1 CYP3A&
S35 ocoo o o o o
I | predicted predicted
Probability for Class Membership Known CYP2D6 CYP3A4
Figure 2. Distribution of the predictions with respect to probability reference drug  inhibitor of inhibition® inhibition®
of class membership when cross validating the CYP3A4 inhibition  ajmalicind’ CYP2D6 52% (inh) 31% (noninh)
model based on ECFP and 1037 drug candidates. azelastiné® CYP2D6 45% (noninh)  27% (noninh)
Table 8. Result of C Validafi f the CYP3AL G ian K | ﬂuoxetir_1e19 CYP2D6 27% (non!nh) 20% (non!nh)
able o. Result of Lross Validation or the aussian Kerne paroxetiné® CYP2D6 31% (noninh) ~ 48% (noninh)
Weightedk-NN Modef perphenaziné CYP2D6 54% (inh) 28% (noninh)
pred. pred. quinidine® CYP2D6 79% (inh) 13% (noninh)
inhibitor  noninhibitor nonclassified  sum sertraliné® CYP2D6 62% (inh) 39% (noninh)
d CYP2D6 120 (+34) 93 (424 58 271 clotrimazolg0.20.21 CYP3A4 28% (noninh)  56% (inh)
mﬁﬁﬁ%ﬁor (-34) tr24) cyclosporin &t CYP3A4 26% (noninh)  37% (noninh)
measured CYP2D6 32 (+20) 689 (25 45 766 indinavir'? CYP3A4  53%(inh) 55% (inh)
norlmjinhibitor (+20) t2s5) itraconazol&®-20 CYP3A4 44% (noninh)  35% (noninh)
ketoconazol¥19-21 CYP3A4 40% (noninh)  44% (noninh)
sum 152 ¢-54) 782 (-49) 103 1037 miconazolé®.20.21 CYP3A4  47% (noninh)  39% (noninh)
aThe numbers in brackets illustrate how the nonclassified compounds _troleandomycift CYP3A4  40% (noninh)  38% (noninh)

would be classified. aThe average Tanimoto coefficients to the 20 nearest neighbors in the
o . ) training set were 0.20 and 0.24 for the CYP2D6 and CYP3A4 models,

Table 9. Result of Cross Validation of the Traditional CYP3A4 Binary respectively inh = inhibitor; noninh= noninhibitor.

k-NN ModeF

_ pred. pred. y published inhibitors of either CYP2D6 or CYP3A4 were
inhibitor _ noninhibitor nonclassified sum  ¢|5ssified by use of both classification models. The prediction
measured CYP2D6 87 (+26) 124 (+34) 60 271 results of the external test set are shown in Table 11.
inhibitor A It of the decision th ds with dicted
measured CYP2D6 23 (F16) 681 ¢-46) 62 766 s a result of the decision that compounds with predicte
noninhibitor percent inhibition between 40 and 60% could not be classified,
sum 110 ¢42) 805 (-80) 122 1037 the CYP2D6 model was only able to classify 8 of the 14

compounds in the external test set, while 10 compounds were
classified by the CYP3A4 model. The relatively low number
of predicted compounds can be explained by the low average
Traditionally, binaryk-NN was also applied to the same Tanimoto s.lmllarlty. between the 14 compounds an.d.the 20
CYP3A4 data set. The result is shown in Table 9. The table N€arest neighbors in the CYP2D6 and CYP3A4 training set,

shows that when using traditionally binakyNN, 122 of the Which were 0.20 and 0.14, respectively. The low Tar_limoto
1037 compounds in the training set were not classified, coefﬂuen@s fgr the external test set compared to the two internal
corresponding to 12%. Of the classified compounds, 84% were test sets |n_d|_cated that the ex'_[ernal test set differs more from
predicted to the right class. The results indicated that the new the tWo training sets than the internal test sets.
Gaussian kernel weighteklNN method applied to the data The CYP2D6 model predicted two of the remaining four
reported here was more predictive than the traditional binary CYP2D6 classified inhibitors and predicted all noninhibitors
k-NN method. to the right class. The CYP3A4 model was not able to predict
Validation of CYP3A4 Model. The model was validated ~ any of the CYP3A4 inhibitors with a probability above 60%
with a test set consisting of 345 drug candidates. The averagebut predicted all noninhibitors to the right class as well.
Tanimoto similarity to the training set of all 345 compounds lllustration of Data by MDS Plots. To illustrate how data
and 20 nearest neighbors was 0.48. The results are listed inwere distributed, multidimensional scalf3gMDS) plots, based
Table 10, which shows that 47 of the 345 compounds, on a matrix containing the Tanimoto distances between all
corresponding to 14%, were not classified. Of the classified compounds, were made. The MDS plots show where in the
compounds, 88% were predicted to the right class. In accordancechemical space the internal and external test sets were compared
with the LOOCYV result, the distribution of correctly predicted to the CYP2D6 and CYP3A4 training sets (Figures 3 and 4).
inhibitors and noninhibitors was unbalanced; in the validation The two plots stress that the external data set was in the
result, 65% of the classified inhibitors and 94% of the classified periphery of the two training sets, while the internal test sets
noninhibitors were correctly classified. were more or less covered by the chemical space of the training
Assessment Using an External Test SetFor further sets. In Figures 5 and 6, the compounds that were falsely
assessment of the two models, an external test set of 14predicted by the two models are plotted.

aThe numbers in brackets illustrate how the nonclassified compounds
would be classified.
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Figure 3. Multidimensional scaling (MDS) plot of CYP2D6 data: circlestraining set (865 objects), trianglesinternal test set (288 objects),
and squares= external test set (14 objects).

Figure 5 shows that the compounds from the external test will have k equally weighted nearest neighbors with arbitrary
set that were falsely predicted by the CYP2D6 model were distributed CYP inhibition rates. The problem occurred in this
grouped in a sparse area of the training set in the top of the study when the two in silico models were assessed by 14
plot, while the falsely predicted internal test drugs were published inhibitors of either CYP2D6 or CYP3A4. The average
distributed evenly throughout the plot. In Figure 6, the com- Tanimoto similarity between the 14 compounds and the 20
pounds from the external test set that were falsely predicted by nearest neighbors in the CYP2D6 and 3A4 training set were
the CYP3A4 were grouped in two clusters. 0.20 and 0.14, respectively. The 14 compounds were poorly

Figures 7 and 8 show how the nonclassified test compoundspredicted by the models, and based on the low similarity
were distributed in the chemical space that the training set between test compounds and training set, one would not expect
represented. Most of the compounds from the external test setreliable predictions.
that could not be predicted by the CYP2D6 model were found Al compounds in the two training sets were decomposed
in sparse areas of the training set throughout the plot (Figure into ring fragments and functional groups. To our knowledge,
7), while the nonclassified internal test drugs were distributed it is the first time frequent structural fragments of noninhibitors
evenly throughout the plot. However, the compounds from the and inhibitors of CYP2D6 and CYP3A4 are presented. Interest-
external test set that could not be predicted by the CYP3A4 ingly, carboxyl acid fragments were more frequent in nonin-

model were more widely distributed. hibitors than inhibitors of both CYP2D6 and CYP3A4. As one
) ) would expect, it was not the same structural fragments that were
Discussion the most frequent in the inhibitors of the two isotypes. A tertiary

In this work, in silico models that classify CYP2D6 and amine fragment was found frequently in CYP2D6 inhibitors and
CYP3A4 inhibition based on two diverse data sets are presentedin CYP3A4 noninhibitors, whereas a phenol fragment and
The compounds in both data sets were tested by a clusteringSulfone were found frequently in CYP2D6 noninhibitors and
analysis and found to be diverse in the chemical space theyCYP3A4 inhibitors (Tables 3 and 4). It is generally accepted
represent. It is unlikely that a model can cover all of the that substrates for CYP2D6 are basic and substrates for CYP3A4
chemistry space if it is built using only compounds from Novo are neutral or basi?* This corresponds well together with
Nordisk projects. Thus, when applying the models on new drug the finding that the carboxylic acid fragment was frequent in
candidates one has to make sure that the compounds in theoninhibitors of the two isoenzymes. It is described that
training set are representative of these compounds. This can b&CYP2D6 substrates contain at least one basic nitrégejch
done by evaluating the average similarity between the test could be part of the explanation for why a tertiary amine
compound and thke-NNs in the training set. If the similarity is ~ fragment was found frequently in CYP2D6 inhibitors (Table
low the Gaussian kernel weighteeNN model used in this study ~ 3)-
will most probably give in-doubt classifications. This is expected  Physical-chemical descriptors have successfully been included
to be the case, as test compounds that end up in sparselyn in silico models for CYP2D®&725> and CYP3A4 7925
populated parts of the chemical space, with high probability, inhibition, but only few studies with applications of fingerprints
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Figure 4. MDS plot of CYP3A4 data: circles training set (1037 objects), trianglesinternal test set (345 objects), and squaresxternal test
set (14 objects).

are publishe&!%12|n the present study, we used ECFP from The similar property principle was first presented explicitly by
SciTegic for modeling and found that FCFP_6 gave the most Johnson and Maggiotaand states that molecules that are
predictive CYP2D6 model, while ECPF_6 were more suitable structurally similar are likely to have similar properties.
for classification of CYP3A4 inhibition. In FCFP, atoms are However, there are many exceptions to the principls even
characterized by functional types. For instance, in FCFP, all minor structural variations can have a drastic effect on the levels
halogens give the same atom bit code, whereas in ECFP, theof activity in a set of analogues. Nevertheless, the principle is
atoms are characterized by chemical elements and differentin general applicable and there is substantial evidence to support
halogens have different atom bit cod@&CFP_6 contain fewer its use in lead-discovery prograrifs38
features than ECFP_6, and there is no structural explanation to The classification method provides a probability of class
why FCFP_6 gave the most predictive CYP2D6 model, while memberships for each molecule when predicting new drug
ECPF_6 was found more suitable for classification of CYP3A4 candidates. In the present study, it was decided that the
inhibition. It should be mentioned that there was not much probability should be above 60% for a drug to be classified.
difference in the model performance between the two kinds of The consequence of this was that-1131% of the compounds
fingerprints. In a study of the inhibition dEscherichia coli in the internal test set were to be not classified. It is not clear
dihydrofolate reductase, Rogers et&investigated differences  why these compounds could not be classified; it was compounds
between FCFP_6 and ECFP_6. They find better results whenfrom different projects, some found in the periphery of the
the model building is based on FCFP_6 than ECFP_6. They training set and some in the center (see Figures 7 and 8). The
suggest that it is likely that the extra abstraction obtained by average similarities between the nonclassified compounds and
FCFP_6 is not advantageous for predicting samples similar to the 20 nearest neighbors in the training set were 0.50 and 0.48
the training data but become valuable when extrapolating to for CYP2D6 and CYP3A4, respectively. This was almost the
molecules that are quite different from the training data. The same as the average similarities between all test compounds
cluster analysis of the two training sets used in the present studyand the 20 nearest neighbors in the training set, which were
showed that there were more clusters compared to compound$).53 and 0.48 for CYP2D6 and CYP3A, respectively.
in the CYP2D6 training set, indicating that this data set was  Overall, the models were predictive when validated with
more diverse than the CYP3A4 training set. This could be a internal test sets; here 82% for CYP2D6 and 88% for CYP3A4
part of the explanation to why different kinds of fingerprints of the predicted compounds in the internal test set were classified
were found to be optimal in the two in silico models. correctly. However, the results clearly showed that in both
The models presented in this work were built using a Gaussian models noninhibitors were classified with higher certainty than
kernel weighted-NN algorithm based on a Tanimoto similarity  inhibitors. Assessed by internal test sets, only 59% and 65% of
search on ECFF-NN statistics and other nonlinear methods the classified inhibitors were predicted correctly by the CYP2D6
have previously been found very useful in QSAR modelit§:3! and CYP3A4 models, respectively, while the same number for
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Figure 5. MDS plot of falsely predicted compounds in the CYP2D6 model: cireteraining set (865 objects), triangles false predicted
internal test compounds, and squares$alse predicted external test compounds.

noninhibitors was 94% in both models. One could think that It was found that the in silico models based on ECFP could
the different classification accuracies were due to the fact that be used to select CYP2D6 and CYP3A4 noninhibitors in an
there were 23 times as many noninhibitors compared to early stage of discovery projects.
inhibitors in both training sets. To test this hypothesis, a training
set of 500 compounds with equal numbers of inhibitors and
noninhibitors was randomly selected from the original CYP2D6
training set of 865 compounds. Subsequently, the original  aterials. For both CYP inhibition screening assays, mixed
internal CYP2D6 test set was classified by the new model. The pools of human liver microsomes were obtained from Gentest BD
distribution of correct classified inhibitors and noninhibitors did  Bjosciences (Woburn, MA). DextromethorphaBehethyl14C] was
not change, showing that the biased training sets used in thispurchased from ARC (St. Louis, MO). Quinidine sulfate dehydrate,
study were not the cause of the unbalanced classification resultsketoconazole, erythromycin, troleandomycin, nicotinamide adenine
between inhibitors and noninhibitors. dinucleotide phosphate (NADPH), charcoal, and trichloroacetic acid
One can discuss the value of a model with very biased output. solution were purchased from Sigma-Aldrich (St. Louis, MO).
However, despite the unbalanced classification results obtainederythromycinN-methyl+4C] and Ultima Gold were from Perkin-
in the present study, it is reasonable to use the developed model&Imer, (Boston, MA).

when predicting CYP inhibition potential of new drug candi-  |nhibition Assay. The in vitro CYP-subtype activity in the
dates, as the models only have few false positives. In both ghsence and presence of a test compound (the potential CYP-
models, only 4% of the classified compounds were false suptype inhibitor) was determined using a CYP-subtype selective
positives, meaning that few potential drugs will be eliminated substrate, dextromethorphan for CYP2D6 and erythromycin for
before synthesis. CYP3A4. Incubations were utilized (200L, 37 °C, 10 min)
containing human liver microsomes (HLM, 0.1 mgR-fmethyl-
14C]-dextromethorphan in the CYP2D6 assay (total concruM3

In this study, Gaussian kernel weight&eNN models to = Km) or [N-methyl+4C] erythromycin and erythromycin in the
predict CYP2D6 and CYP3A4 inhibition were constructed to CYP3A4 assay (total concn: 20M = Km), the cofactor NADPH
predict CYP2D6 and CYP3A4 inhibition. Assessment using both (1 mM), and the test compound (20M). All incubations were
cross validation and an internal test set resulted in the CYP2D6 performed in triplicate. The HLM preparations used consisted of a
classification model predicting 8283% of the classified pool of =15 donors to obtain an average concentration of CYP
compounds correctly, while ¥014% of the compounds were subtypes, which are known to differ markedly between indivi-
not classified. Similarly, the CYP3A4 classification model was duals.
assessed with cross validation and an internal test set and The metabolic conversion o©fmethyl44C]-dextromethorphan
predicted 8788% of the classified compounds correctly, while  or [N-methyl+“C] erythromycin was assessed by activated charcoal
10—14% of the compounds were not classified. extraction, followed by liquid scintillation counting of the super-

Materials and Methods

Conclusion
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Figure 6. MDS plot of falsely predicted compounds in the CYP3A4 model: cireteraining set (1037 objects), triangles false predicted
internal test compounds, and squares$alse predicted external test compounds.
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Figure 7. MDS plot of nonclassified compounds in the CYP2D6 model: ciretesaining set (865 objects), triangles non-classified internal
test compounds, and squaresnonclassified external test compounds.

natant. The thereby measurédC-formaldehyde reflected the The specificity of the assays was validated by incubation
metabolism of the selective substrate by CYP subtype. preformed in the absence and presence of known inhibitors:
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Figure 9. Decomposition of Mizolastine with respect to the ring
scheme (a) and the donor/acceptor scheme (b).

quinidine for CYP2D6 and keoconazole and troleandomycin for @ h', No _O N
CYP3A4. For test compounds where100% inhibition was N O/ WNl/j N, O l\lll/\J
determined, % inhibition was set to 100%. @:N\VN Z @:N\VN Z
1153 drug candidates and the CYP3A4 data set of 1382 compounds,
both from 20 Novo Nordisk discovery projects. Before the model
and then sorted with respect to percent CYP inhibition. Subse- C(-N-C-C-C-C-C-@2) %NUCUC(%NU%@1)%CHCHCHCH@I
quently, data were divided into a training set and a test set. Each Neneeee
the test set and the rest of the compounds for the training set. The h', N. O Ne N_ O
selection method was chosen to obtain a training set where all Novo N O/ \fj N ( Tj
Nordisk projects and levels of inhibition were represented. @N\Y" NF \ﬂ/ SN N
N

compounds in the training set, a cluster analysis using the Jarvis
Patrick clustering metho#166 MACCS structural key®¥, and a
using the fingerprint database clustering procedure in MOE. SUNECOCONCECLOLN

Structural Fragments. Two decomposition schemes were
converted a H-depleted molecular graph into a list of ring fragments
by removing all atoms and associated bonds that were not in aassigned to an atom is based on the number of connections, the
acceptor® and included their beta neighborhood into the associated generalized atom types (hydrogen-bond donor, hydrogen-bond
fragment. Overlapping fragments were considered as one unionacceptor, positively ionizable, negatively ionizable, aromatic, and
molecular graph was transformed into fragments and representedinformation and with the codes of its immediate neighbor atoms,
in a canonical line notation similar to SLNas illustrated in Figure was hashed to produce the next order code, which was mapped
mented as Cheshire sc.ri[ﬂfsit was subsequently feasible to apply the required level of description had been achietfeBiciTegic’s
standard pivoting techniques in a spreadsheet on records associatingCFP is a fairly novel type of fingerprint, which uses an adapted

Descriptors. The in silico Gaussian kernel weightddNN indicates the presence of structural features among a vast set of
algorithm is based on Tanimoto similarity searches using either potential features. Please consult Klon et’ar Rogers et al® for

Training Set and Test Set.The CYP2D6 data set consisted of —_—
Q. 3
constructions were performed, the data sets were sorted by project
C%C%C%C%C%Ch@1

data set was divided so that every fifth compound was selected for ()

Cluster Analysis. To address the structural diversity of the

- ! 7 F

threshold defined by a Tanimoto coeffici&mf 0.85 was performed
developed to define molecular equivalence cla$s€he first class
ring. The second class used standard definitions for donors andelement type, the charge, and the mass for ECFPs and on six
fragment. For both decomposition schemes, each H-depletedhalogen) for FCFPs. This code, in combination with the bond
9 for an antihistamine, mizolastine. All algorithms were imple- into an address space of size 232, and the process was iterated until
compound id, fragment string, and CYP inhibition class. version of the Morgan algorithm to generate a feature vector that
SciTegic’s ECFP or FCFP.In ECFP and FCFP, the initial code  further details. In this study, ECFP_2, ECFP_4, ECFP_6, FCFP_2,
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FCFP_4, and FCFP_6 fingerprints were tested. The numeric codebe converted to probabilities like(class= inhibitor | x) ~ P(y >
denotes the diameter in bonds up to which features were generated50% | x) using the Gaussian CDF as described in step 2 above.
Statistical Method. A novel Gaussian kernel weightddNN The rationale for using different weighing schemes for the
regression and classification algorithm has been used in the presenéstimation of the regression value and for the estimation of the
study. The algorithm was implemented using the software packageuncertainty, respectively, is that the actual measurements inherently
Pipeline Pilot from SciTegft and the open-source statistics package contain some noise. The [uncertainty term] makes it possible to
R*9, The algorithm augments the standk®N algorithm by taking represent this noise in the model, by allowing more distant neighbors
the Tanimoto similarity to the nearest neighbors in ECFP space more influence on the uncertainty estimation than in the regression
into account and was inspired by work by Shep&rdlowe 3! value estimation. In this way, a more reliable uncertainty estimation
Atkeson et al®? and Harper et &’ The algorithm, when used for  is obtained.
classification, was split into the following two steps: (1) Use Validation. The parameterk, [dynamic smoothing factor], and
Gaussian kernel weightéeNN regression to estimate the regression [uncertainty term] and the type of ECFP of the models were chosen
value and to estimate the regression estimate’s associated uncersing LOOCV?2 Permutation tests were made to make sure that
tainty for the test molecule. (2) Calculate the Gaussian cumulative the predictions made by the original models were based on the
distribution function (CDF) at 50% inhibition, with mean and variance described by the fingerprints. Thealues from each
standard deviation given by the regression value and uncertainty,training set were randomized four times, and four new models were
respectively, estimated in step 1. generated. The models based on randomized data were then
The regression step, step 1, was split into the following steps: validated using LOOCV. The models were subsequently assessed
(1) For the test molecule, find thk nearest neighbors, their  using an internal CYP2D6 and CYP3A4 test set of 288 and 345
measured inhibitiony;, and their corresponding similarities compounds, respectively. Furthermore, an external test set of 14
measured as Tanimoto similarity in the ECFP space spanned bypublished inhibitors of either CYP2D6 or CYP3A4 were classified
the training set. (2) Assign weights to each of kheearest neighbors by use of the two classification models.
based on their similarities, using a Gaussian kernel to map the

similarity to a weight Acknowledgment. We thank Anni Schmidt and Karen

Stentoft for excellent experimental work.
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