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Inhibition of cytochrome P450 (CYP) enzymes is unwanted because of the risk of severe side effects due
to drug-drug interactions. We present two in silico Gaussian kernel weightedk-nearest neighbor models
based on extended connectivity fingerprints that classify CYP2D6 and CYP3A4 inhibition. Data used for
modeling consisted of diverse sets of 1153 and 1382 drug candidates tested for CYP2D6 and CYP3A4
inhibition in human liver microsomes. For CYP2D6, 82% of the classified test set compounds were predicted
to the correct class. For CYP3A4, 88% of the classified compounds were correctly classified. CYP2D6 and
CYP3A4 inhibition were additionally classified for an external test set on 14 drugs, and multidimensional
scaling plots showed that the drugs in the external test set were in the periphery of the training sets.
Furthermore, fragment analyses were performed and structural fragments frequent in CYP2D6 and CYP3A4
inhibitors and noninhibitors are presented.

Introduction

Metabolism determines the fate of a compound entering the
body, ultimately controlling whether or not the compound exerts
a toxic effect. Ideally, drugs and other xenobiotics are broken
down to harmless soluble metabolites that are easily excreted
through the urine or bile.1 Cytochromes P450 (CYPsa) are the
primary enzymes responsible for human drug metabolism. The
isoenzyme CYP3A4 is the most abundant hepatic cytochrome
P450 and is estimated to be involved in the metabolism of more
than 50% of all marketed drugs.2 CYP3A4 can also be inhibited
by other xenobiotics, such as flavonoids, which are consumed
in large quantities in the human diet.3 CYP2D6 is a polymorphic
member of the P450 super-family, which has been studied
extensively, partially because 7-10% of the Caucasians and
1% of the Asians lack CYP2D6 activity and partially because
it catalyzes the oxidation of many broadly prescribed pharma-
ceuticals, including antiarrhythmics, antidepressants, antipsy-
chotics, beta-blockers, and analgesics.1,4

Because a huge variety of drugs are metabolized by CYP3A4
and CYP2D6, inhibition of these enzymes by one drug might
lead to a decreased clearance of another drug when two or more
drugs are administrated simultaneously. Such unexpected drug-
drug interactions can potentially have fatal consequences for
the patient, and new chemical entities (NCEs) should be
investigated for CYP inhibition as early as possible in drug
research.5

In silico approaches for predicting the CYP inhibition
potential of drugs are attractive as they may be applied to entire
chemical libraries at the outset of the drug discovery process,
usually at very small cost. In that way, the in silico models
offer considerable potential for reducing the number of experi-
mental studies required for compound selection and for improv-
ing the success rate. Furthermore, predictions can be made on
virtual compounds.

Different in silico models for the classification of CYP2D61,6-8

and CYP3A45-7,9-13 inhibition have been published. The
CYP2D6 models are based on 100 to 1810 diverse compounds,
with the most predictive model being the one published by
O’Brien and de Groot.8 This model, built on 1810 compounds
and validated with a test set consisting of 600 molecules, has
an accuracy as high as 99% when 23% of the compounds are
not classified. The published CYP3A4 models are based on 218
to 4000 diverse compounds, and the accuracies cover a field
from 66-94%. In both CYP3A4 and CYP2D6 models there is
generally a marked difference in the descriptors chosen and the
applied statistical methods.

In this work, we report in silico models that classify CYP2D6
and CYP3A4 inhibition based on two diverse data sets of
NCEs tested in 20µM concentrations for inhibition in human
liver microsomes with dextromethorphan and erythromycin as
substrate probes. The models are built using a novel Gaussian
kernel weightedk-nearest neighbor (k-NN) algorithm based on
Tanimoto similarity14 searches on extended connectivity fin-
gerprints (ECFP) and functional class fingerprints (FCFP)15

from SciTegic. The classification method provides a proba-
bility of class memberships for each molecule when predicting
new drug candidates. It was decided that the probability should
be above 60% for classification because a classification
result based on a probability of class membership below 60%
would be unreliable and could not be used to decide whe-
ther or not a potential drug candidate should be elimin-
ated.
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Results

Training Sets. The training sets consisted of a total of 865
compounds, which were tested for inhibition of CYP2D6 in
human liver microsomes with dextromethorphan as substrate,
and a total of 1037 compounds tested for inhibition of CYP3A4
in human liver microsomes with erythromycin as substrate; 571
of the compounds were tested for both CYP2D6 and CYP3A4
inhibition. The distribution of compounds in the two classes is
shown in Tables 1 and 2.

The compounds were from 20 Novo Nordisk discovery
projects and had been tested over a 4-5 year period. The
complete structures of the compounds cannot be disclosed at
this time because they are in the discovery stage at Novo
Nordisk. To address the structural diversity of the compounds
in training sets, a cluster analysis using 166 MACCS structural
keys and a threshold defined by a Tanimoto coefficient14 of
0.85 was performed. The 865 compounds tested for CYP2D6
inhibition were split into 589 clusters, the five highest populated
clusters contained 31, 15, 14, 11, and 11 members, respectively,
the next 117 clusters contained 2-10 members, and 467 clusters
were singletons. The 1037 compounds tested for CYP3A4
inhibition were split into 741 clusters, and the five highest
populated clusters contained 26, 23, 12, 11, and 10 members,
respectively. The next 141 clusters contained 2-7 members,
and 595 clusters were singletons. The results suggest that the
two training sets were diverse within the MACCS chemical
space they represent.

Structural Fragments. All compounds in the two training
sets were decomposed into ring fragments and functional groups
as described in the method section. Structural groups for which
we found statistical difference in frequency between the two
classes with statistical difference beyond a 0.005 test level, are
shown in Tables 3 and 4. The frequency of a fragment in a
CYP inhibition class was calculated as

whereNfragment_classis the number of compounds containing the
fragment in a CYP inhibition class,Ntotal is the total number of
compounds,Nfragment_total is the total number of compounds
containing the fragment, andNclassis the number of compounds
in the CYP inhibition class. The data sets were unbalanced
between inhibitors and noninhibitors, but asNclasswas included
in eq 1, the effect of the biased data set was eliminated. The
frequencies of fragments in a CYP inhibition class were
statistically compared by standard binomial techniques.

For CYP2D6 structural groups, including benzene, aceta-
mides, carboxylic acids, phenol fragments, sulfone, and carbonic

acid esters, were more frequent in noninhibitors than in
inhibitors, whereas tertiary amines and oxadiazole fragments
were more frequent in inhibitors than in noninhibitors (Table
3). For CYP3A4 structural groups, such as tertiary amines,
carboxylic acids, pyridine fragments, pyrrolidine, cyclopentyl-

Table 1. Training and Test Set Divided into Two Classes with Respect
to CYP2D6 Inhibition in Human Liver Microsomes

training set test set

inhibition < 50% 552 183
inhibition g 50% 313 105

sum 865 288

Table 2. Training and Test Set Divided into Two Classes with Respect
to CYP3A4 Inhibition in Human Liver Microsomes

training set test set

inhibition < 50% 766 255
inhibition g 50% 271 90

sum 1037 345

frequency of a fragment) (Nfragment_class× Ntotal)/

(Nfragment_total× Nclass) (1)

Table 3. Occurrence and Frequency of Ring Fragments and Functional
Groups in the CYP2D6 Training Set; 571 of the 865 Compounds Were
Also Represented in the CYP3A4 Training Set

a Significant difference on a 0.001 test level from the frequency of the
noninhibitors.b Significant difference on a 0.005 test level from the
frequency of the noninhibitors.

Table 4. Occurrence and Frequency of Ring Fragments and Functional
Groups in the CYP3A4 Training Set; 571 of the 1037 Compounds Were
Also Represented in the CYP2D6 Training Set

a Significant difference on a 0.001 test level from the frequency of the
noninhibitors.b Significant difference on a 0.005 test level from the
frequency of the noninhibitors.
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piperazine, and one- or three-benzene groups, were frequent in
noninhibitors, whereas the chemical structures, acetamides,
phenol fragments, and sulfone and pyridine fragments, were
found to be frequent in CYP3A4 inhibitors (Table 4).

Construction of CYP2D6 Model. The optimal parameters
of the CYP2D6 kernel weightedk-NN model were chosen using
leave-one-out cross validation (LOOCV) on the 865 compounds
in the training set, as described in Materials and Methods. It
was decided to use FCFP_6 as descriptors, 20 neighbors, a
dynamic smoothing factor set to 0.5, and an uncertainty term
of 0.2. The distribution of predictions with respect to probability
of class membership is depicted in Figure 1, while the
classification result is shown in Table 5. Figure 1 shows that
the noninhibitors in general were predicted with higher certainty
than the inhibitors. A higher percentage of the noninhibitors
was predicted with a probability of class membership of 0.70
or more, and fewer compounds were falsely predicted as
inhibitors. Table 5 shows that 120 of the 865 compounds in
the training set, corresponding to 14%, were not classified. As
mentioned above, the prediction results were unbalanced
between inhibitors and noninhibitors; 69% of the classified
inhibitors and 90% of the classified noninhibitors were classified
correctly. Overall, 83% of the classified compounds were
predicted to the right class.

A permutation test16 was made to secure that the predictions
were based on the variance described by the fingerprints. The
y-values were randomized four times, the four new models gave
a mean prediction accuracy on 55% (standard deviation) 0.02),
and 23% (standard deviation) 0.02) of the compounds were
not classified due to the 60% threshold. The result shows that
the predictions made by the original model were not based on
an accidental correlation.

To investigate the power of the new Gaussian weightedk-NN
method, traditionally binaryk-NN was applied to the same data
set. Table 6 shows that, when using traditionally binaryk-NN,

164 of the 865 compounds in the training set corresponding to
19% were not classified and 81% of the classified compounds
were predicted to the right class. The results indicated that the
new Gaussian kernel weightedk-NN method applied to the data
reported here was more predictive than the traditional binary
k-NN method.

Validation of CYP2D6 Model. The model was validated
on a test set consisting of 288 drug candidates. The average
Tanimoto similarity to the training set of all 288 compounds
and 20 nearest neighbors was 0.53. The result is depicted in
Table 7, which shows that 28 of the 288 compounds, corre-
sponding to 10%, were not classified. Of the classified
compounds, 82% were predicted to the right class. In accordance
with the LOOCV result, the distribution of correctly predicted
inhibitors and noninhibitors was biased; in the validation result,
59% of the classified inhibitors and 94% of the classified
noninhibitors were correctly classified.

Construction of CYP3A4 Model. The optimal parameters
of the CYP3A4 kernel weightedk-NN model were chosen using
LOOCV on the 1037 compounds in the training set. Based on
the cross validation, it was decided to use ECFP_6 as descrip-
tors, 20 neighbors, a dynamic smoothing factor set to 0.4, and
an uncertainty term of 0.2. The distribution of predictions with
respect to probability of class membership is depicted in Figure
2, while the classification result is shown in Table 8. A high
percentage of the noninhibitors was predicted with a probability
of class membership on 0.80 or more, and few compounds were
falsely predicted as inhibitors. Table 8 shows that 103 of the
1037 compounds in the training set, corresponding to 10%, were
not classified. Again, the prediction results were unbalanced
between inhibitors and noninhibitors; 75% of the classified
inhibitors and 96% of the classified noninhibitors were classified
correctly, and overall, 87% of the classified compounds were
predicted to the right class.

A permutation test was made to make sure that the predictions
were based on the variance described by the fingerprints. The
four new models gave a mean prediction accuracy on 68%
(standard deviation) 0.01), and 15% (standard deviation)
0.02) of the compounds were not classified due to the 60%
threshold. The result shows that the predictions made by the
original model were not based on an accidental correlation.

Figure 1. Distribution of the predictions with respect to probability
of class membership when cross validating the CYP2D6 inhibition
model based on FCFP and 865 drug candidates.

Table 5. Result of Cross Validation of the CYP2D6 Gaussian Kernel
Weightedk-NN Modela

pred.
inhibitor

pred.
noninhibitor nonclassified sum

measured CYP2D6
inhibitor

180 (+24) 79 (+30) 54 313

measured CYP2D6
noninhibitor

48 (+38) 438 (+28) 66 552

sum 228 (+62) 517 (+58) 120 865

a The numbers in brackets illustrate how the nonclassified compounds
would be classified.

Table 6. Result of Cross Validation of the Traditional CYP2D6 Binary
k-NN Modela

pred.
inhibitor

pred.
noninhibitor nonclassified sum

measured CYP2D6
inhibitor

137 (+35) 89 (+52) 87 313

measured CYP2D6
noninhibitor

45 (+32) 430 (+45) 77 552

sum 182 (+67) 519 (+97) 164 865

a The numbers in brackets illustrate how the nonclassified compounds
would be classified.

Table 7. Result of Test Set Validation of the CYP2D6 Gaussian Kernel
Weightedk-NN Modela

pred.
inhibitor

pred.
noninhibitor nonclassified sum

measured CYP2D6
inhibitor

53 (+10) 37 (+5) 15 105

measured CYP2D6
noninhibitor

11 (+9) 159 (+4) 13 183

sum 64 (+19) 196 (+9) 28 288

a The numbers in brackets illustrate how the nonclassified compounds
would be classified.

Prediction of Cytochrome P450 2D6 and 3A4 Inhibition Journal of Medicinal Chemistry, 2007, Vol. 50, No. 3503



Traditionally, binaryk-NN was also applied to the same
CYP3A4 data set. The result is shown in Table 9. The table
shows that when using traditionally binaryk-NN, 122 of the
1037 compounds in the training set were not classified,
corresponding to 12%. Of the classified compounds, 84% were
predicted to the right class. The results indicated that the new
Gaussian kernel weightedk-NN method applied to the data
reported here was more predictive than the traditional binary
k-NN method.

Validation of CYP3A4 Model. The model was validated
with a test set consisting of 345 drug candidates. The average
Tanimoto similarity to the training set of all 345 compounds
and 20 nearest neighbors was 0.48. The results are listed in
Table 10, which shows that 47 of the 345 compounds,
corresponding to 14%, were not classified. Of the classified
compounds, 88% were predicted to the right class. In accordance
with the LOOCV result, the distribution of correctly predicted
inhibitors and noninhibitors was unbalanced; in the validation
result, 65% of the classified inhibitors and 94% of the classified
noninhibitors were correctly classified.

Assessment Using an External Test Set.For further
assessment of the two models, an external test set of 14

published inhibitors of either CYP2D6 or CYP3A4 were
classified by use of both classification models. The prediction
results of the external test set are shown in Table 11.

As a result of the decision that compounds with predicted
percent inhibition between 40 and 60% could not be classified,
the CYP2D6 model was only able to classify 8 of the 14
compounds in the external test set, while 10 compounds were
classified by the CYP3A4 model. The relatively low number
of predicted compounds can be explained by the low average
Tanimoto similarity between the 14 compounds and the 20
nearest neighbors in the CYP2D6 and CYP3A4 training set,
which were 0.20 and 0.14, respectively. The low Tanimoto
coefficients for the external test set compared to the two internal
test sets indicated that the external test set differs more from
the two training sets than the internal test sets.

The CYP2D6 model predicted two of the remaining four
CYP2D6 classified inhibitors and predicted all noninhibitors
to the right class. The CYP3A4 model was not able to predict
any of the CYP3A4 inhibitors with a probability above 60%
but predicted all noninhibitors to the right class as well.

Illustration of Data by MDS Plots. To illustrate how data
were distributed, multidimensional scaling22 (MDS) plots, based
on a matrix containing the Tanimoto distances between all
compounds, were made. The MDS plots show where in the
chemical space the internal and external test sets were compared
to the CYP2D6 and CYP3A4 training sets (Figures 3 and 4).
The two plots stress that the external data set was in the
periphery of the two training sets, while the internal test sets
were more or less covered by the chemical space of the training
sets. In Figures 5 and 6, the compounds that were falsely
predicted by the two models are plotted.

Figure 2. Distribution of the predictions with respect to probability
of class membership when cross validating the CYP3A4 inhibition
model based on ECFP and 1037 drug candidates.

Table 8. Result of Cross Validation of the CYP3A4 Gaussian Kernel
Weightedk-NN Modela

pred.
inhibitor

pred.
noninhibitor nonclassified sum

measured CYP2D6
inhibitor

120 (+34) 93 (+24) 58 271

measured CYP2D6
noninhibitor

32 (+20) 689 (+25) 45 766

sum 152 (+54) 782 (+49) 103 1037

a The numbers in brackets illustrate how the nonclassified compounds
would be classified.

Table 9. Result of Cross Validation of the Traditional CYP3A4 Binary
k-NN Modela

pred.
inhibitor

pred.
noninhibitor nonclassified sum

measured CYP2D6
inhibitor

87 (+26) 124 (+34) 60 271

measured CYP2D6
noninhibitor

23 (+16) 681 (+46) 62 766

sum 110 (+42) 805 (+80) 122 1037

a The numbers in brackets illustrate how the nonclassified compounds
would be classified.

Table 10. Result of Test Set Validation of the CYP3A4 Gaussian
Kernel Weightedk-NN Modela

pred.
inhibitor

pred.
noninhibitor nonclassified sum

measured CYP2D6
inhibitor

44 (+11) 24 (+11) 22 90

measured CYP2D6
noninhibitor

13 (+13) 217 (+12) 25 255

sum 57 (+24) 241 (+23) 47 345

a The numbers in brackets illustrate how the nonclassified compounds
would be classified.

Table 11. Prediction of Percent Inhibition of Compounds in an External
Test Set Consisting of Known Inhibitors of Either CYP2D6 or
CYP3A4a

reference drug
known

inhibitor of

predicted
CYP2D6

inhibitionb

predicted
CYP3A4

inhibitionb

ajmalicine17 CYP2D6 52% (inh) 31% (noninh)
azelastine18 CYP2D6 45% (noninh) 27% (noninh)
fluoxetine19 CYP2D6 27% (noninh) 20% (noninh)
paroxetine19 CYP2D6 31% (noninh) 48% (noninh)
perphenazine19 CYP2D6 54% (inh) 28% (noninh)
quinidine19 CYP2D6 79% (inh) 13% (noninh)
sertraline19 CYP2D6 62% (inh) 39% (noninh)

clotrimazole10,20,21 CYP3A4 28% (noninh) 56% (inh)
cyclosporin A21 CYP3A4 26% (noninh) 37% (noninh)
indinavir19 CYP3A4 53% (inh) 55% (inh)
itraconazole19-20 CYP3A4 44% (noninh) 35% (noninh)
ketoconazole10,19-21 CYP3A4 40% (noninh) 44% (noninh)
miconazole10,20,21 CYP3A4 47% (noninh) 39% (noninh)
troleandomycin21 CYP3A4 40% (noninh) 38% (noninh)

a The average Tanimoto coefficients to the 20 nearest neighbors in the
training set were 0.20 and 0.24 for the CYP2D6 and CYP3A4 models,
respectively.b inh ) inhibitor; noninh) noninhibitor.
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Figure 5 shows that the compounds from the external test
set that were falsely predicted by the CYP2D6 model were
grouped in a sparse area of the training set in the top of the
plot, while the falsely predicted internal test drugs were
distributed evenly throughout the plot. In Figure 6, the com-
pounds from the external test set that were falsely predicted by
the CYP3A4 were grouped in two clusters.

Figures 7 and 8 show how the nonclassified test compounds
were distributed in the chemical space that the training set
represented. Most of the compounds from the external test set
that could not be predicted by the CYP2D6 model were found
in sparse areas of the training set throughout the plot (Figure
7), while the nonclassified internal test drugs were distributed
evenly throughout the plot. However, the compounds from the
external test set that could not be predicted by the CYP3A4
model were more widely distributed.

Discussion

In this work, in silico models that classify CYP2D6 and
CYP3A4 inhibition based on two diverse data sets are presented.
The compounds in both data sets were tested by a clustering
analysis and found to be diverse in the chemical space they
represent. It is unlikely that a model can cover all of the
chemistry space if it is built using only compounds from Novo
Nordisk projects. Thus, when applying the models on new drug
candidates one has to make sure that the compounds in the
training set are representative of these compounds. This can be
done by evaluating the average similarity between the test
compound and thek-NNs in the training set. If the similarity is
low the Gaussian kernel weightedk-NN model used in this study
will most probably give in-doubt classifications. This is expected
to be the case, as test compounds that end up in sparsely
populated parts of the chemical space, with high probability,

will have k equally weighted nearest neighbors with arbitrary
distributed CYP inhibition rates. The problem occurred in this
study when the two in silico models were assessed by 14
published inhibitors of either CYP2D6 or CYP3A4. The average
Tanimoto similarity between the 14 compounds and the 20
nearest neighbors in the CYP2D6 and 3A4 training set were
0.20 and 0.14, respectively. The 14 compounds were poorly
predicted by the models, and based on the low similarity
between test compounds and training set, one would not expect
reliable predictions.

All compounds in the two training sets were decomposed
into ring fragments and functional groups. To our knowledge,
it is the first time frequent structural fragments of noninhibitors
and inhibitors of CYP2D6 and CYP3A4 are presented. Interest-
ingly, carboxyl acid fragments were more frequent in nonin-
hibitors than inhibitors of both CYP2D6 and CYP3A4. As one
would expect, it was not the same structural fragments that were
the most frequent in the inhibitors of the two isotypes. A tertiary
amine fragment was found frequently in CYP2D6 inhibitors and
in CYP3A4 noninhibitors, whereas a phenol fragment and
sulfone were found frequently in CYP2D6 noninhibitors and
CYP3A4 inhibitors (Tables 3 and 4). It is generally accepted
that substrates for CYP2D6 are basic and substrates for CYP3A4
are neutral or basic.23,24 This corresponds well together with
the finding that the carboxylic acid fragment was frequent in
noninhibitors of the two isoenzymes. It is described that
CYP2D6 substrates contain at least one basic nitrogen,23 which
could be part of the explanation for why a tertiary amine
fragment was found frequently in CYP2D6 inhibitors (Table
3).

Physical-chemical descriptors have successfully been included
in in silico models for CYP2D66,7,25 and CYP3A46-7,9,25

inhibition, but only few studies with applications of fingerprints

Figure 3. Multidimensional scaling (MDS) plot of CYP2D6 data: circles) training set (865 objects), triangles) internal test set (288 objects),
and squares) external test set (14 objects).
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are published.8,11,12 In the present study, we used ECFP from
SciTegic for modeling and found that FCFP_6 gave the most
predictive CYP2D6 model, while ECPF_6 were more suitable
for classification of CYP3A4 inhibition. In FCFP, atoms are
characterized by functional types. For instance, in FCFP, all
halogens give the same atom bit code, whereas in ECFP, the
atoms are characterized by chemical elements and different
halogens have different atom bit codes.15 FCFP_6 contain fewer
features than ECFP_6, and there is no structural explanation to
why FCFP_6 gave the most predictive CYP2D6 model, while
ECPF_6 was found more suitable for classification of CYP3A4
inhibition. It should be mentioned that there was not much
difference in the model performance between the two kinds of
fingerprints. In a study of the inhibition ofEscherichia coli
dihydrofolate reductase, Rogers et al.15 investigated differences
between FCFP_6 and ECFP_6. They find better results when
the model building is based on FCFP_6 than ECFP_6. They
suggest that it is likely that the extra abstraction obtained by
FCFP_6 is not advantageous for predicting samples similar to
the training data but become valuable when extrapolating to
molecules that are quite different from the training data. The
cluster analysis of the two training sets used in the present study
showed that there were more clusters compared to compounds
in the CYP2D6 training set, indicating that this data set was
more diverse than the CYP3A4 training set. This could be a
part of the explanation to why different kinds of fingerprints
were found to be optimal in the two in silico models.

The models presented in this work were built using a Gaussian
kernel weightedk-NN algorithm based on a Tanimoto similarity
search on ECFP.k-NN statistics and other nonlinear methods
have previously been found very useful in QSAR modeling.15,26-31

The similar property principle was first presented explicitly by
Johnson and Maggiora32 and states that molecules that are
structurally similar are likely to have similar properties.
However, there are many exceptions to the principle,33 as even
minor structural variations can have a drastic effect on the levels
of activity in a set of analogues. Nevertheless, the principle is
in general applicable and there is substantial evidence to support
its use in lead-discovery programs.34-38

The classification method provides a probability of class
memberships for each molecule when predicting new drug
candidates. In the present study, it was decided that the
probability should be above 60% for a drug to be classified.
The consequence of this was that 10-14% of the compounds
in the internal test set were to be not classified. It is not clear
why these compounds could not be classified; it was compounds
from different projects, some found in the periphery of the
training set and some in the center (see Figures 7 and 8). The
average similarities between the nonclassified compounds and
the 20 nearest neighbors in the training set were 0.50 and 0.48
for CYP2D6 and CYP3A4, respectively. This was almost the
same as the average similarities between all test compounds
and the 20 nearest neighbors in the training set, which were
0.53 and 0.48 for CYP2D6 and CYP3A, respectively.

Overall, the models were predictive when validated with
internal test sets; here 82% for CYP2D6 and 88% for CYP3A4
of the predicted compounds in the internal test set were classified
correctly. However, the results clearly showed that in both
models noninhibitors were classified with higher certainty than
inhibitors. Assessed by internal test sets, only 59% and 65% of
the classified inhibitors were predicted correctly by the CYP2D6
and CYP3A4 models, respectively, while the same number for

Figure 4. MDS plot of CYP3A4 data: circles) training set (1037 objects), triangles) internal test set (345 objects), and squares) external test
set (14 objects).
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noninhibitors was 94% in both models. One could think that
the different classification accuracies were due to the fact that
there were 2-3 times as many noninhibitors compared to
inhibitors in both training sets. To test this hypothesis, a training
set of 500 compounds with equal numbers of inhibitors and
noninhibitors was randomly selected from the original CYP2D6
training set of 865 compounds. Subsequently, the original
internal CYP2D6 test set was classified by the new model. The
distribution of correct classified inhibitors and noninhibitors did
not change, showing that the biased training sets used in this
study were not the cause of the unbalanced classification results
between inhibitors and noninhibitors.

One can discuss the value of a model with very biased output.
However, despite the unbalanced classification results obtained
in the present study, it is reasonable to use the developed models
when predicting CYP inhibition potential of new drug candi-
dates, as the models only have few false positives. In both
models, only 4% of the classified compounds were false
positives, meaning that few potential drugs will be eliminated
before synthesis.

Conclusion

In this study, Gaussian kernel weightedk-NN models to
predict CYP2D6 and CYP3A4 inhibition were constructed to
predict CYP2D6 and CYP3A4 inhibition. Assessment using both
cross validation and an internal test set resulted in the CYP2D6
classification model predicting 82-83% of the classified
compounds correctly, while 10-14% of the compounds were
not classified. Similarly, the CYP3A4 classification model was
assessed with cross validation and an internal test set and
predicted 87-88% of the classified compounds correctly, while
10-14% of the compounds were not classified.

It was found that the in silico models based on ECFP could
be used to select CYP2D6 and CYP3A4 noninhibitors in an
early stage of discovery projects.

Materials and Methods

Materials. For both CYP inhibition screening assays, mixed
pools of human liver microsomes were obtained from Gentest BD
Biosciences (Woburn, MA). Dextromethorphane[O-methyl-14C] was
purchased from ARC (St. Louis, MO). Quinidine sulfate dehydrate,
ketoconazole, erythromycin, troleandomycin, nicotinamide adenine
dinucleotide phosphate (NADPH), charcoal, and trichloroacetic acid
solution were purchased from Sigma-Aldrich (St. Louis, MO).
Erythromycin[N-methyl-14C] and Ultima Gold were from Perkin-
Elmer, (Boston, MA).

Inhibition Assay. The in vitro CYP-subtype activity in the
absence and presence of a test compound (the potential CYP-
subtype inhibitor) was determined using a CYP-subtype selective
substrate, dextromethorphan for CYP2D6 and erythromycin for
CYP3A4. Incubations were utilized (200µL, 37 °C, 10 min)
containing human liver microsomes (HLM, 0.1 mg), [O-methyl-
14C]-dextromethorphan in the CYP2D6 assay (total concn: 3µM
) Km) or [N-methyl-14C] erythromycin and erythromycin in the
CYP3A4 assay (total concn: 20µM ) Km), the cofactor NADPH
(1 mM), and the test compound (20µM). All incubations were
performed in triplicate. The HLM preparations used consisted of a
pool of g15 donors to obtain an average concentration of CYP
subtypes, which are known to differ markedly between indivi-
duals.

The metabolic conversion of [O-methyl-14C]-dextromethorphan
or [N-methyl-14C] erythromycin was assessed by activated charcoal
extraction, followed by liquid scintillation counting of the super-

Figure 5. MDS plot of falsely predicted compounds in the CYP2D6 model: circles) training set (865 objects), triangles) false predicted
internal test compounds, and squares) false predicted external test compounds.
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natant. The thereby measured14C-formaldehyde reflected the
metabolism of the selective substrate by CYP subtype.

The specificity of the assays was validated by incubation
preformed in the absence and presence of known inhibitors:

Figure 6. MDS plot of falsely predicted compounds in the CYP3A4 model: circles) training set (1037 objects), triangles) false predicted
internal test compounds, and squares) false predicted external test compounds.

Figure 7. MDS plot of nonclassified compounds in the CYP2D6 model: circles) training set (865 objects), triangles) non-classified internal
test compounds, and squares) nonclassified external test compounds.
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quinidine for CYP2D6 and keoconazole and troleandomycin for
CYP3A4. For test compounds where>100% inhibition was
determined, % inhibition was set to 100%.

Training Set and Test Set.The CYP2D6 data set consisted of
1153 drug candidates and the CYP3A4 data set of 1382 compounds,
both from 20 Novo Nordisk discovery projects. Before the model
constructions were performed, the data sets were sorted by project
and then sorted with respect to percent CYP inhibition. Subse-
quently, data were divided into a training set and a test set. Each
data set was divided so that every fifth compound was selected for
the test set and the rest of the compounds for the training set. The
selection method was chosen to obtain a training set where all Novo
Nordisk projects and levels of inhibition were represented.

Cluster Analysis. To address the structural diversity of the
compounds in the training set, a cluster analysis using the Jarvis-
Patrick clustering method,39166 MACCS structural keys,40 and a
threshold defined by a Tanimoto coefficient14 of 0.85 was performed
using the fingerprint database clustering procedure in MOE.41

Structural Fragments. Two decomposition schemes were
developed to define molecular equivalence classes.42 The first class
converted a H-depleted molecular graph into a list of ring fragments
by removing all atoms and associated bonds that were not in a
ring. The second class used standard definitions for donors and
acceptors43 and included their beta neighborhood into the associated
fragment. Overlapping fragments were considered as one union
fragment. For both decomposition schemes, each H-depleted
molecular graph was transformed into fragments and represented
in a canonical line notation similar to SLN,44 as illustrated in Figure
9 for an antihistamine, mizolastine. All algorithms were imple-
mented as Cheshire scripts.45 It was subsequently feasible to apply
standard pivoting techniques in a spreadsheet on records associating
compound id, fragment string, and CYP inhibition class.

Descriptors. The in silico Gaussian kernel weightedk-NN
algorithm is based on Tanimoto similarity searches using either
SciTegic’s ECFP or FCFP.15 In ECFP and FCFP, the initial code

assigned to an atom is based on the number of connections, the
element type, the charge, and the mass for ECFPs and on six
generalized atom types (hydrogen-bond donor, hydrogen-bond
acceptor, positively ionizable, negatively ionizable, aromatic, and
halogen) for FCFPs. This code, in combination with the bond
information and with the codes of its immediate neighbor atoms,
was hashed to produce the next order code, which was mapped
into an address space of size 232, and the process was iterated until
the required level of description had been achieved.46 SciTegic’s
ECFP is a fairly novel type of fingerprint, which uses an adapted
version of the Morgan algorithm to generate a feature vector that
indicates the presence of structural features among a vast set of
potential features. Please consult Klon et al.47 or Rogers et al.15 for
further details. In this study, ECFP_2, ECFP_4, ECFP_6, FCFP_2,

Figure 8. MDS plot of nonclassified compounds in the CYP3A4 model: circles) training set (1037 objects), triangles) nonclassified internal
test compounds, and squares) nonclassified external test compounds.

Figure 9. Decomposition of Mizolastine with respect to the ring
scheme (a) and the donor/acceptor scheme (b).
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FCFP_4, and FCFP_6 fingerprints were tested. The numeric code
denotes the diameter in bonds up to which features were generated.

Statistical Method. A novel Gaussian kernel weightedk-NN
regression and classification algorithm has been used in the present
study. The algorithm was implemented using the software package
Pipeline Pilot from SciTegic48 and the open-source statistics package
R49. The algorithm augments the standardk-NN algorithm by taking
the Tanimoto similarity to the nearest neighbors in ECFP space
into account and was inspired by work by Shepard,50 Lowe,51

Atkeson et al.,52 and Harper et al.27 The algorithm, when used for
classification, was split into the following two steps: (1) Use
Gaussian kernel weightedk-NN regression to estimate the regression
value and to estimate the regression estimate’s associated uncer-
tainty for the test molecule. (2) Calculate the Gaussian cumulative
distribution function (CDF) at 50% inhibition, with mean and
standard deviation given by the regression value and uncertainty,
respectively, estimated in step 1.

The regression step, step 1, was split into the following steps:
(1) For the test molecule, find thek nearest neighbors, their
measured inhibitionyi, and their corresponding similaritiessi

measured as Tanimoto similarity in the ECFP space spanned by
the training set. (2) Assign weights to each of thek nearest neighbors
based on their similarities, using a Gaussian kernel to map the
similarity to a weight

The kernel bandwidthσ is chosen dynamically for the test molecule
based on the nearest neighbor only

The [dynamic smoothing factor] was chosen from the training set
using LOOCV. The extra term, 0.000 001, had been added to avoid
singularities. (3) Estimate the Gaussian kernel weightedk-NN
regression as a weighted average, usingwi, of the measured
inhibition yi

(4) Having estimated the regression value, it remains to estimate
the regression estimate’s associated uncertainty. Therefore, assign-
ment of a new set of weights to each of thek nearest neighbors
based on their similarities occurs using a Gaussian kernel to map
the similarity to a weight

The kernel bandwidthσ was chosen dynamically for the test
molecule based on the nearest neighborplus an uncertainty term

The [uncertainty term] was chosen from the training set using
LOOCV. (5) Estimate the regression estimate’s associated uncer-
tainty as the square root of the weighted average of the squared
deviations

Given the predicted regression valueyestimatedand the estimated
uncertainty error_barestimatedand assuming that the uncertainty of
the prediction follows a normal distribution, the estimates can easily

be converted to probabilities likeP(class) inhibitor | x) ∼ P(y g
50% | x) using the Gaussian CDF as described in step 2 above.

The rationale for using different weighing schemes for the
estimation of the regression value and for the estimation of the
uncertainty, respectively, is that the actual measurements inherently
contain some noise. The [uncertainty term] makes it possible to
represent this noise in the model, by allowing more distant neighbors
more influence on the uncertainty estimation than in the regression
value estimation. In this way, a more reliable uncertainty estimation
is obtained.

Validation. The parametersk, [dynamic smoothing factor], and
[uncertainty term] and the type of ECFP of the models were chosen
using LOOCV.53 Permutation tests were made to make sure that
the predictions made by the original models were based on the
variance described by the fingerprints. They-values from each
training set were randomized four times, and four new models were
generated. The models based on randomized data were then
validated using LOOCV. The models were subsequently assessed
using an internal CYP2D6 and CYP3A4 test set of 288 and 345
compounds, respectively. Furthermore, an external test set of 14
published inhibitors of either CYP2D6 or CYP3A4 were classified
by use of the two classification models.
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